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Abstract

We propose an extension of the time-domain ray method that remains valid near caustics. It

does not require complex ray tracing in the caustic shadow but needs higher travel-time

derivatives to be calculated along the ray (this can be done by solving differential equations

similar to dynamic ray-tracing system).

Introduction

Geometrical ray tracing, combined with asymptotic methods for estimating the wave

amplitudes along the rays, is widely used in seismic studies. With the development of

computers numerical methods become a reasonable tool for seismic wavefield modeling

replacing the ray method. But there are areas where the ray theory is necessary, e.g., it forms

the basis and is an essential part of the Kirchhoff migration and the AVO analysis. In both

cases it is important to calculate amplitude dynamics properly (including points near caustics).

Thus it is an important issue: extending the ray theory to make it work near caustics. A lot had

been done in this field (e.g. see [Hanyga and Helle, 1995]). Proposed techniques may be

called global asymtotics as they use information from several rays (coalescing at caustic) to

compute the wave field in singular point. In the caustic shadow one should trace complex

rays. We propose a variant of local asymptotic that allows computing seismic signal along one

separate ray and remains valid at caustics. Standard ray method procedure is as follows:

calculation of the second travel-time derivatives along the ray provides ray amplitudes in

regular points (dynamic ray tracing). Similarly calculation of the higher order travel-time

derivatives along the ray provides seismic signal description that remains valid near caustics

(third travel-time derivatives are required near a simple caustic, forth near the cusp and etc.).

These derivatives may be calculated as a solution of linear differential equations.

Theory

The detailed method description may be found in [Goldin and Duchkov, 2000] and [Duchkov

and Goldin, 2001]. In asymptotic ray theory P- and S-waves are computed independently. If

1x  is a regular point of the ray we use the zero’s term of ray series to compute seismic signal:
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where ),( txu  is the displacement vector, )(xτ  and 0( )U x  denote travel-time and amplitude

(they can be found using standard procedure of ray tracing and dynamic ray tracing).

Discontinuous function ( )tRq
)(+  (an ideal wave or time-domain asymptotic) is defined as:
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where )(tδ  is Dirac δ -function. Now if 1x  is singular then we go back to the regular point

0x  of the same ray and construct Kirchhoff-type integral representation of the wave field:
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where )( 1xG  is the Green’s tensor for the point source placed at point 1x , )(inu  is the

wavefield calculated at point 0x , ] [Tn  is the Cauchy stress operator for surface element dS

with normal n, surface S is transversal to ray and contains 0x . For asymptotic solutions

integrals (3) may be reduced to time-domain analogues of oscillatory integrals:

( )∫∫ − dxdyyxtyx ),(~),( τδL ,                                             (4)

where integration is local in the vicinity of zero. Thus we do not need function τ~  but some of

its derivatives at zero (third derivatives for simple caustic and etc.). Derivatives of L  and τ~

are found from )( 1xG  and )(inu  at point 0x .

Examples

We used synthetic examples to illustrate the technique application. In the Fig. 1 one can see

the caustic cusp (bold line) that separates “illuminated zone” (three rays hit every point) from

the caustic “shadow” (one ray hits every point). A seismic ray propagating in homogeneous

medium (bold arrow) from shadow into illuminated zone. Seismic signal was calculated at

several points of the ray (main component of the P-wave). Upper panels correspond to the

composite signal computed from (4). Here singularity is an idealized model of the wave. This

representation may be considered as a time-domain variant of a Piercey function (known for

harmonic fields). It is mainly illustrative showing how three different signals (singularities)

interfere in the vicinity of a caustic cusp. After convolution with the source function we get a

synthetic seismic signal (lower panels) and see how caustic distorts its form. It is interesting

to look at first point of the ray situated in a shadow of the caustic cusp. Smooth maximum in

the composite signal (upper left panel) is a result of energy dissipation from illuminated area

into shadow. Example of synthetic seismograms is shown in Fig. 2. We consider P-wave

reflected from a curvilinear boundary. A set of reflected rays has an envelope, i.e., caustic

cusp (see upper panel). We put a line of receivers (bold segment) in the shadow of the caustic

cusp. Only one ray hits every receiver but caustic causes standard ray method to break down

(panel (a)). Application of our integral formulas provides correct signal form in this case

(panel (b)). Note that our method accounts for energy dissipation into the caustic shadow

without tracing complex rays or Gaussian beams.

Conclusions

Proposed extension of the ray theory provides wave description that remains valid near

caustics. It works well in time domain avoiding forward and inverse Fourier transform.

Synthetic tests show that it works well in the shadow zone of the caustic cusp with out
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complex ray tracing or Gaussian beams summation. It requires higher travel-time derivatives

to be calculated along the ray (this may be done by solving special differential equations).

Present research was supported by RFBR (grants 01-05-64812 and 00-15-98537) and Russian

Ministry of Education (grant E00-8.0.-27).
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Fig. 1. Seismic signal calculated at different points of the ray near caustic cusp (see
description in the text).
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Fig. 2 Synthetic seismograms for reflected P-wave, vertical component (receiver line –

bold segment in the upper panel). Standard ray method (a) and our approach (b).
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